Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
2.
Circ Cardiovasc Imaging ; 17(4): e016104, 2024 Apr.
Article En | MEDLINE | ID: mdl-38567518

BACKGROUND: The Fontan operation is a palliative technique for patients born with single ventricle heart disease. The superior vena cava (SVC), inferior vena cava (IVC), and hepatic veins are connected to the pulmonary arteries in a total cavopulmonary connection by an extracardiac conduit or a lateral tunnel connection. A balanced hepatic flow distribution (HFD) to both lungs is essential to prevent pulmonary arteriovenous malformations and cyanosis. HFD is highly dependent on the local hemodynamics. The effect of age-related changes in caval inflows on HFD was evaluated using cardiac magnetic resonance data and patient-specific computational fluid dynamics modeling. METHODS: SVC and IVC flow from 414 patients with Fontan were collected to establish a relationship between SVC:IVC flow ratio and age. Computational fluid dynamics modeling was performed in 60 (30 extracardiac and 30 lateral tunnel) patient models to quantify the HFD that corresponded to patient ages of 3, 8, and 15 years, respectively. RESULTS: SVC:IVC flow ratio inverted at ≈8 years of age, indicating a clear shift to lower body flow predominance. Our data showed that variation of HFD in response to age-related changes in caval inflows (SVC:IVC, 2, 1, and 0.5 corresponded to ages, 3, 8, and 15+, respectively) was not significant for extracardiac but statistically significant for lateral tunnel cohorts. For all 3 caval inflow ratios, a positive correlation existed between the IVC flow distribution to both the lungs and the HFD. However, as the SVC:IVC ratio changed from 2 to 0.5 (age, 3-15+) years, the correlation's strength decreased from 0.87 to 0.64, due to potential flow perturbation as IVC flow momentum increased. CONCLUSIONS: Our analysis provided quantitative insights into the impact of the changing caval inflows on Fontan's long-term HFD, highlighting the importance of SVC:IVC variations over time on Fontan's long-term hemodynamics. These findings broaden our understanding of Fontan hemodynamics and patient outcomes.


Fontan Procedure , Heart Defects, Congenital , Humans , Child, Preschool , Child , Adolescent , Vena Cava, Superior/diagnostic imaging , Vena Cava, Superior/surgery , Vena Cava, Superior/physiology , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/surgery , Liver/diagnostic imaging , Hemodynamics/physiology , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/surgery , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/surgery
3.
Ann Biomed Eng ; 52(2): 414-424, 2024 Feb.
Article En | MEDLINE | ID: mdl-37957528

The impact of aortic valve stenosis (AS) extends beyond the vicinity of the narrowed leaflets into the left ventricle (LV) and into the systemic vasculature because of highly unpredictable valve behavior and complex blood flow in the ascending aorta that can be attributed to the strong interaction between the narrowed cusps and the ejected blood. These effects can become exacerbated during exercise and may have implications for disease progression, accurate diagnosis, and timing of intervention. In this 3-D patient-specific study, we employ strongly coupled fluid-structure interaction (FSI) modeling to perform a comprehensive biomechanical evaluation of systolic ejection dynamics in a stenosed aortic valve (AV) during increasing LV contraction. Our model predictions reveal that the heterogeneous ∆P vs. Q relationship that was observed in our previous clinical study can be attributed to a non-linear increase (by ~ 1.5-fold) in aortic valve area as LV heart rate increases from 70 to 115 bpm. Furthermore, our results show that even for a moderately stenotic valve, increased LV contraction during exercise can lead to high-velocity flow turbulence (Re = 11,700) in the aorta similar to that encountered with a severely stenotic valve (Re ~ 10,000), with concomitant greater viscous loss (~3-fold increase) and elevated wall stress in the ascending aorta. Our FSI predictions also reveal that individual valve cusps undergo distinct and highly non-linear increases (>100%) in stress during exercise, potentially contributing to progressive calcification. Such quantitative biomechanical evaluations from realistic FSI workflows provide insights into disease progression and can be integrated with current stress testing for AS patients to comprehensively predict hemodynamics and valve function under both baseline and exercise conditions.


Aortic Valve Stenosis , Aortic Valve , Humans , Exercise Test , Hemodynamics/physiology , Models, Cardiovascular , Disease Progression
4.
J Drug Target ; 31(1): 109-118, 2023 01.
Article En | MEDLINE | ID: mdl-35938912

Peri-stent restenosis following stent implantation is a major clinical problem. We have previously demonstrated that ultrasound-facilitated liposomal delivery of pioglitazone (PGN) to the arterial wall attenuated in-stent restenosis. To evaluate ultrasound mediated arterial delivery, in Yucatan miniswine, balloon inflations were performed in the carotid and subclavian arteries to simulate stent implantation and induce fibrin formation. The fibrin-binding peptide, GPRPPGGGC, was conjugated to echogenic liposomes (ELIP) containing dinitrophenyl-L-alanine-labelled pioglitazone (DNP-PGN) for targeting purposes. After pre-treating the arteries with nitroglycerine, fibrin-binding peptide-conjugated PGN-loaded ELIP (PAFb-DNP-PGN-ELIP also termed atheroglitatide) were delivered to the injured arteries via an endovascular catheter with an ultrasound core, either with or without ultrasound application (EKOSTM Endovascular System, Boston Scientific). In arteries treated with atheroglitatide, there was substantial delivery of PGN into the superficial layers (5 µm from the lumen) of the arteries with and without ultrasound, [(1951.17 relative fluorescence units (RFU) vs. 1901.17 RFU; P-value = 0.939)]. With ultrasound activation there was increased penetration of PGN into the deeper arterial layers (up to 35 µm from the lumen) [(13195.25 RFU vs. 7681.00 RFU; P-value = 0.005)]. These pre-clinical data demonstrate ultrasound mediated therapeutic vascular delivery to deeper layers of the injured arterial wall. This model has the potential to reduce peri- stent restenosis.


Arteries , Liposomes , Pioglitazone , Ultrasonography , Stents
5.
R Soc Open Sci ; 9(2): 211694, 2022 Feb.
Article En | MEDLINE | ID: mdl-35154799

Transcatheter aortic valve replacement (TAVR) is now a standard treatment for high-surgical-risk patients with severe aortic valve stenosis. TAVR is being explored for broader indications including degenerated bioprosthetic valves, bicuspid valves and for aortic valve (AV) insufficiency. It is, however, challenging to predict whether the chosen valve size, design or its orientation would produce the most-optimal haemodynamics in the patient. Here, we present a novel patient-specific evaluation framework to realistically predict the patient's AV performance with a high-fidelity fluid-structure interaction analysis that included the patient's left ventricle and ascending aorta (AAo). We retrospectively evaluated the pre- and post-TAVR dynamics of a patient who underwent a 23 mm TAVR and evaluated against the patient's virtually de-calcified AV serving as a hypothetical benchmark. Our model predictions were consistent with clinical data. Stenosed AV produced a turbulent flow during peak-systole, while aortic flow with TAVR and de-calcified AV were both in the laminar-to-turbulent transitional regime with an estimated fivefold reduction in viscous dissipation. For TAVR, dissipation was highest during early systole when valve deformation was the greatest, suggesting that an efficient valve opening may reduce energy loss. Our study demonstrates that such patient-specific modelling frameworks can be used to improve predictability and in the planning of AV interventions.

6.
Arterioscler Thromb Vasc Biol ; 40(9): 2114-2126, 2020 09.
Article En | MEDLINE | ID: mdl-32640902

OBJECTIVE: Quantitative relationships between the extent of injury and thrombus formation in vivo are not well understood. Moreover, it has not been investigated how increased injury severity translates to blood-flow modulation. Here, we investigated interconnections between injury length, clot growth, and blood flow in a mouse model of laser-induced thrombosis. Approach and Results: Using intravital microscopy, we analyzed 59 clotting events collected from the cremaster arteriole of 14 adult mice. We regarded injury length as a measure of injury severity. The injury caused transient constriction upstream and downstream of the injury site resulting in a 50% reduction in arteriole diameter. The amount of platelet accumulation and fibrin formation did not depend on arteriole diameter or deformation but displayed an exponentially increasing dependence on injury length. The height of the platelet clot depended linearly on injury length and the arteriole diameter. Upstream arteriolar constriction correlated with delayed upstream velocity increase, which, in turn, determined downstream velocity. Before clot formation, flow velocity positively correlated with the arteriole diameter. After the onset of thrombus growth, flow velocity at the injury site negatively correlated with the arteriole diameter and with the size of the above-clot lumen. CONCLUSIONS: Injury severity increased platelet accumulation and fibrin formation in a persistently steep fashion and, together with arteriole diameter, defined clot height. Arterial constriction and clot formation were characterized by a dynamic change in the blood flow, associated with increased flow velocity.


Abdominal Muscles/blood supply , Arterioles/pathology , Blood Coagulation , Thrombosis/pathology , Vascular System Injuries/pathology , Animals , Arterioles/injuries , Arterioles/physiopathology , Blood Flow Velocity , Blood Platelets/metabolism , Constriction, Pathologic , Disease Models, Animal , Fibrin/metabolism , Intravital Microscopy , Male , Mice , Microscopy, Fluorescence , Severity of Illness Index , Thrombosis/blood , Thrombosis/physiopathology , Time Factors , Vascular System Injuries/blood , Vascular System Injuries/physiopathology
7.
J Thromb Haemost ; 18(11): 3078-3085, 2020 11.
Article En | MEDLINE | ID: mdl-33456401

Background: The cremaster arteriole laser-induced injury model is a powerful technique with which to investigate the molecular mechanisms that drive thrombus formation. This model is capable of direct visualization and quantification of accumulation of thrombus constituents, including both platelets and fibrin. However, a large degree of variability in platelet accumulation and fibrin formation is observed between thrombi. Strategies to understand this variability will enhance performance and standardization of the model. We determined whether ablation injury size contributes to variation in platelet accumulation and fibrin formation and, if so, whether incorporating ablation injury size into measurements reduces variation. Methods: Thrombus formation was initiated by laser-induced injury of cremaster arterioles of mice (n=59 injuries). Ablation injuries within the vessel wall were consistently identified and quantified by measuring the length of vessel wall injury observed immediately following laser-induced disruption. Platelet accumulation and fibrin formation as detected by fluorescently-labeled antibodies were captured by digital intra-vital microscopy. Results: Laser-induced disruption of the vessel wall resulted in ablation injuries of variable length (18-95 µm) enabling interrogation of the relationship between injury severity and thrombus dynamics. Strong positive correlations were observed between vessel injury length and both platelet and fibrin when the data are transformed as area under the curve (Spearman r = 0.80 and 0.76 respectively). Normalization of area under the curve measurements by injury length reduced intraclass coefficients of variation among thrombi and improved hypothesis testing when comparing different data sets. Conclusions: Measurement of vessel wall injury length provides a reliable and robust marker of injury severity. Injury length can effectively normalize measurements of platelet accumulation and fibrin formation improving data interpretation and standardization.


Thrombosis , Animals , Arterioles , Blood Platelets , Fibrin , Lasers , Mice
8.
Biomech Model Mechanobiol ; 18(5): 1461-1474, 2019 Oct.
Article En | MEDLINE | ID: mdl-31055691

The ability of a blood clot to modulate blood flow is determined by the clot's resistance, which depends on its structural features. For a flow with arterial shear, we investigated the characteristic patterns relating to clot shape, size, and composition on the one hand, and its viscous resistance, intraclot axial flow velocity, and shear distributions on the other. We used microfluidic technology to measure the kinetics of platelet, thrombin, and fibrin accumulation at a thrombogenic surface coated with collagen and tissue factor (TF), the key clot-formation trigger. We subsequently utilized the obtained data to perform additional calibration and validation of a detailed computational fluid dynamics model of spatial clot growth under flow. We then ran model simulations to gain insights into the resistance of clots formed under our experimental conditions. We found that increased thrombogenic surface length and TF surface density enhanced the bulk thrombin and fibrin generation in a nonadditive, synergistic way. The height of the platelet deposition domain-and, therefore, clot occlusivity-was rather robust to thrombogenic surface length and TF density variations, but consistently increased with time. Clot viscous resistance was non-uniform and tended to be higher in the fibrin-rich, inner "core" region of the clot. Interestingly, despite intraclot structure and viscous resistance variations, intraclot flow velocity variations were minor compared to the abrupt decrease in flow velocity around the platelet deposition region. Our results shed new light on the connection between the structure of clots under arterial shear and spatiotemporal variations in their resistance to flow.


Arteries/pathology , Arteries/physiopathology , Computer Simulation , Microfluidics , Models, Cardiovascular , Thrombosis/pathology , Thrombosis/physiopathology , Vascular Resistance , Blood Flow Velocity , Calibration , Fibrin/metabolism , Fluorescence , Humans , Hydrodynamics , Kinetics , Thrombin/metabolism , Thromboplastin/metabolism
9.
Sci Rep ; 8(1): 6187, 2018 04 18.
Article En | MEDLINE | ID: mdl-29670148

Highly resolved three-dimensional (3D) fluid structure interaction (FSI) simulation using patient-specific echocardiographic data can be a powerful tool for accurately and thoroughly elucidating the biomechanics of mitral valve (MV) function and left ventricular (LV) fluid dynamics. We developed and validated a strongly coupled FSI algorithm to fully characterize the LV flow field during diastolic MV opening under physiologic conditions. Our model revealed that distinct MV deformation and LV flow patterns developed during different diastolic stages. A vortex ring that strongly depended on MV deformation formed during early diastole. At peak E wave, the MV fully opened, with a local Reynolds number of ~5500, indicating that the flow was in the laminar-turbulent transitional regime. Our results  showed that during diastasis, the vortex structures caused the MV leaflets to converge, thus increasing mitral jet's velocity. The vortex ring became asymmetrical, with the vortex structures on the anterior side being larger than on the posterior side. During the late diastolic stages, the flow structures advected toward the LV outflow tract, enhancing fluid transport to the aorta. This 3D-FSI study demonstrated the importance of leaflet dynamics, their effect on the vortex ring, and their influence on MV function and fluid transport within the LV during diastole.


Diastole , Hemodynamics , Mitral Valve/physiology , Models, Cardiovascular , Systole , Algorithms , Atrial Function , Blood Flow Velocity , Heart Atria/diagnostic imaging , Heart Ventricles/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Mitral Valve/diagnostic imaging , Ventricular Function
10.
Biophys J ; 114(4): 978-991, 2018 02 27.
Article En | MEDLINE | ID: mdl-29490257

The structure and growth of a blood clot depend on the localization of tissue factor (TF), which can trigger clotting during the hemostatic process or promote thrombosis when exposed to blood under pathological conditions. We sought to understand how the growth, structure, and mechanical properties of clots under flow are shaped by the simultaneously varying TF surface density and its exposure area. We used an eight-channel microfluidic device equipped with a 20- or 100-µm-long collagen surface patterned with lipidated TF of surface densities ∼0.1 and ∼2 molecules/µm2. Human whole blood was perfused at venous shear, and clot growth was continually measured. Using our recently developed computational model of clot formation, we performed simulations to gain insights into the clot's structure and its resistance to blood flow. An increase in TF exposure area resulted not only in accelerated bulk platelet, thrombin, and fibrin accumulation, but also in increased height of the platelet mass and increased clot resistance to flow. Moreover, increasing the TF surface density or exposure area enhanced platelet deposition by approximately twofold, and thrombin and fibrin generation by greater than threefold, thereby increasing both clot size and its viscous resistance. Finally, TF effects on blood flow occlusion were more pronounced for the longer thrombogenic surface than for the shorter one. Our results suggest that TF surface density and its exposure area can independently enhance both the clot's occlusivity and its resistance to blood flow. These findings provide, to our knowledge, new insights into how TF affects thrombus growth in time and space under flow.


Blood Platelets/metabolism , Stress, Mechanical , Thromboplastin/metabolism , Thrombosis/physiopathology , Veins/physiopathology , Blood Coagulation , Computer Simulation , Fibrin/metabolism , Humans , Lab-On-A-Chip Devices , Models, Theoretical , Shear Strength , Thrombin/metabolism
12.
Biophys J ; 110(8): 1869-1885, 2016 04 26.
Article En | MEDLINE | ID: mdl-27119646

A comprehensive understanding of thrombus formation as a physicochemical process that has evolved to protect the integrity of the human vasculature is critical to our ability to predict and control pathological states caused by a malfunctioning blood coagulation system. Despite numerous investigations, the spatial and temporal details of thrombus growth as a multicomponent process are not fully understood. Here, we used computational modeling to investigate the temporal changes in the spatial distributions of the key enzymatic (i.e., thrombin) and structural (i.e., platelets and fibrin) components within a growing thrombus. Moreover, we investigated the interplay between clot structure and its mechanical properties, such as hydraulic resistance to flow. Our model relied on the coupling of computational fluid dynamics and biochemical kinetics, and was validated using flow-chamber data from a previous experimental study. The model allowed us to identify the distinct patterns characterizing the spatial distributions of thrombin, platelets, and fibrin accumulating within a thrombus. Our modeling results suggested that under the simulated conditions, thrombin kinetics was determined predominantly by prothrombinase. Furthermore, our simulations showed that thrombus resistance imparted by fibrin was ∼30-fold higher than that imparted by platelets. Yet, thrombus-mediated bloodflow occlusion was driven primarily by the platelet deposition process, because the height of the platelet accumulation domain was approximately twice that of the fibrin accumulation domain. Fibrinogen supplementation in normal blood resulted in a nonlinear increase in thrombus resistance, and for a supplemented fibrinogen level of 48%, the thrombus resistance increased by ∼2.7-fold. Finally, our model predicted that restoring the normal levels of clotting factors II, IX, and X while simultaneously restoring fibrinogen (to 88% of its normal level) in diluted blood can restore fibrin generation to ∼78% of its normal level and hence improve clot formation under dilution.


Blood Circulation , Blood Coagulation , Models, Biological , Thrombosis/physiopathology , Veins/physiopathology , Blood Platelets/physiology , Fibrin/metabolism , Fibrinogen/metabolism , Nonlinear Dynamics , Thrombosis/metabolism
13.
ACS Appl Mater Interfaces ; 7(37): 20538-47, 2015 Sep 23.
Article En | MEDLINE | ID: mdl-26322861

This study presents a new approach to the formulation of functional nanofluids with high solid loading and low viscosity while retaining the surface activity of nanoparticles, in particular, their electrochemical response. The proposed methodology can be applied to a variety of functional nanomaterials and enables exploration of nanofluids as a medium for industrial applications beyond heat transfer fluids, taking advantage of both liquid behavior and functionality of dispersed nanoparticles. The highest particle concentration achievable with pristine 25 nm titania (TiO2) nanoparticles in aqueous electrolytes (pH 11) is 20 wt %, which is limited by particle aggregation and high viscosity. We have developed a scalable one-step surface modification procedure for functionalizing those TiO2 nanoparticles with a monolayer coverage of propyl sulfonate groups, which provides steric and charge-based separation of particles in suspension. Stable nanofluids with TiO2 loadings up to 50 wt % and low viscosity are successfully prepared from surface-modified TiO2 nanoparticles in the same electrolytes. Viscosity and thermal conductivity of the resulting nanofluids are evaluated and compared to nanofluids prepared from pristine nanoparticles. Furthermore, it is demonstrated that the surface-modified titania nanoparticles retain more than 78% of their electrochemical response as compared to that of the pristine material. Potential applications of the proposed nanofluids include, but are not limited to, electrochemical energy storage and catalysis, including photo- and electrocatalysis.

14.
Harv Bus Rev ; 89(1-2): 108-14, 180, 2011.
Article En | MEDLINE | ID: mdl-21370808

Fending off new competitors is a perennial struggle for established companies. Govindarajan and Trimble, of Dartmouth's Tuck School of Business, explain why: Many corporations become too comfortable with their existing business models and neglect the necessary work of radically reinventing them. The authors map out an alternative in their "three boxes" framework. They argue that while a CEO manages the present (box 1), he or she must also selectively forget the past (box 2) in order to create the future (box 3). Infosys chairman N.R. Narayana Murthy mastered the three boxes to reinvigorate his company and greatly increased its changes of enduring for generations.


Administrative Personnel , Commerce , Models, Organizational , Professional Role , Humans , United States
15.
J Heart Valve Dis ; 18(5): 535-45, 2009 Sep.
Article En | MEDLINE | ID: mdl-20099695

BACKGROUND AND AIM OF THE STUDY: One significant problem encountered during surgery to implant mechanical heart valve prostheses is the propensity for thrombus formation near the valve leaflet and housing. This may be caused by the high shear stresses present in the leakage jet flows through small gaps between leaflets and the valve housing during the valve closure phase. METHODS: A two-dimensional (2D) study was undertaken to demonstrate that design changes in bileaflet mechanical valves result in notable changes in the flow-induced stresses and prediction of platelet activation. A Cartesian grid technique was used for the 2D simulation of blood flow through two models of bileaflet mechanical valves, and their flow patterns, closure characteristics and platelet activation potential were compared. A local mesh refinement algorithm allowed efficient and fast flow computations with mesh adaptation based on the gradients of the flow field in the gap between the leaflet and housing at the instant of valve closure. Leaflet motion was calculated dynamically, based on the fluid forces acting on it. Platelets were modeled and tracked as point particles by a Lagrangian particle tracking method which incorporated the hemodynamic forces on the particles. RESULTS: A comparison of results showed that the velocity, wall shear stress and simulated platelet activation parameter were lower in the valve model, with a smaller angle of leaflet traverse between the fully open to the fully closed position. The parameters were also affected to a lesser extent by local changes in the leaflet and housing geometry. CONCLUSION: Computational simulations can be used to examine local design changes to help minimize the fluid-induced stresses that may play a key role in thrombus initiation with the implanted mechanical valves.


Heart Valve Prosthesis , Hemorheology , Heart Valve Prosthesis/adverse effects , Hemodynamics , Humans , Materials Testing , Models, Cardiovascular , Platelet Activation , Prosthesis Design , Regional Blood Flow , Stress, Mechanical , Thrombosis/etiology , Thrombosis/prevention & control
16.
Harv Bus Rev ; 83(5): 58-68, 152, 2005 May.
Article En | MEDLINE | ID: mdl-15929404

Many companies assume that once they've launched a major innovation, growth will soon follow. It's not that simple. High-potential new businesses within established companies face stiff headwinds well after their inception. That's why a company's emphasis must shift: from ideas to execution and from leadership excellence to organizational excellence. The authors spent five years chronicling new businesses at the New York Times Company, Analog Devices, Corning, Hasbro, and other organizations. They found that a breakthrough new business (referred to as NewCo) rarely coexists gracefully with the established business in the company (called CoreCo). The unnatural combination creates three specific challenges--forgetting, borrowing, and learning--that NewCo must meet in order to survive and grow. NewCo must first forget some of what made CoreCo successful. NewCo and CoreCo have elemental differences, so NewCo must leave behind CoreCo's notions about what skills and competencies are most valuable. NewCo must also borrow some of CoreCo's assets--usually in one or two key areas that will give NewCo a crucial competitive advantage. Incremental cost reductions, for example, are never a sufficient justification for borrowing. Finally, NewCo must be prepared to learn some things from scratch. Because strategic experiments are highly uncertain endeavors, NewCo will face several critical unknowns. The more rapidly it can resolve those unknowns--that is, the faster it can learn--the sooner it will zero in on a winning business model or exit a hopeless situation. Managers can accelerate this learning by planning more simply and more often and by comparing predicted and actual trends.


Entrepreneurship/organization & administration , Leadership , Models, Organizational , Organizational Innovation , Capital Financing , Entrepreneurship/economics , Financial Management , Forecasting , Humans , Learning , Total Quality Management
...